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ABSTRACT

In this paper, we summarize systems submitted by PSTL
to the evaluation. We ran Meta-Data (MD) on Switchboard
(SWB) and Broadcast News (BN) data. Speech-to-text sys-
tems were built and tested on both SWB and BN systems
with limited real-time constraints. For our first participa-
tion, our systems were characterized by low complexity, ex-
ploratory operating conditions, and small resources.

MD systems served as the segmentation / clustering stage
of STT recognizers. Recognizers performed trigram Viterbi
decoding with word-internal triphone-models. MLLR adap-
tation followed optionally.

STT results underlined a relatively favourable benchmark
on BN and inauspicious SWB evaluation.

1. INTRODUCTION

The paper will describe components of the systems first.
The frontend, acoustic training, segmenter, adaptation, and
decoder will be presented. Then, a brief section is devoted
to customization of the system. Finally, we give a more
general analysis of the results in the history of NIST evalu-
ations.

2. SYSTEM COMPONENTS

The basic building blocks of the system are described here.

2.1. Frontend

The frontend preprocessing is reviewed here.
For BN, only one frontend was used for MD and STT.

MFCC parameters were generated as follows. The power
spectrum of 32ms is integrated on 20 filter banks. Then,
the inverse cosine transform is truncated to 12 cepstral co-
efficients. The first one is discarded as it models channel
gain. A pre-emphasis, high-pass filter is applied. The en-
ergy is appended to the cepstrum to obtain 13 coefficients.
A five-tap non-causal filter is applied to each parameter to

obtain delta coefficients. The same filter is applied and the
acceleration coefficients are appended to the output. Then,
a purely causal average is computed over 2s and removed
from all coefficients. The analysis is then repeated every
10ms. No special processing regarding narrow-band speech
was performed.

For SWB/STT, PLP coefficients using an 8-pole predic-
tion, with residual energy were computed. The process-
ing window size was 25ms. We computed a conversation-
side mean and variance normalization based on speaker turn
segments automatically generated or from the PEM. Delta
and acceleration coefficients are computed the same way as
above. Variance normalization affected static coefficients
only. The feature vector has 27 coefficients.

For SWB/MD, the same PLP analysis was used, but with
the sliding-window CMS described above and no variance
normalization.

2.2. Acoustic Training

This subsection pertains to acoustic modeling. Most of the
training scheme is not original, and we shall therefore put
more emphasis on distinctive features.

2.2.1. Broadcast News

Database: LDC97S44 (train96) and LDC98S71 (train97)
served as training data. Overlapping speech and music-only
segments are discarded. It was cut according to all available
tags, including SyncTime.
STT-sub10xRT: Word-internal triphonic 3-state HMM
models are generated using a decision tree procedure. The
training data is split into two equal, arbitrarily chosen, and
ideally statistically independent sets. On the first one, a
bottom-down decision-tree clustering yields ML decision-
tree. Questions might be asked about the phoneme state
index, within-word context, and word boundary. To pre-
vent unecessary computations, a minimum of 200 examples
is required on each leaf. These trees are then pruned us-
ing likelihood evaluated from the held-out set. We enforce



a final size of 2739 states by setting a minimum likelihood
change between parent and aggregate children score. For
likelihood computations we assume Gaussianity of data.

A classical iterative-splitting training procedure yields
128 Gaussian per state models. The word-segmentation is
frozen during that stage. Splitting does not occur for Gaus-
sian seen fewer than 20 times. From the resulting 347832
Gaussians obtained thereby, we retain only 192000. To that
end, we adopted a nearest-neighbor, agglomerative cluster-
ing scheme. The negative likelihood change, or entropy,
functioned as a merging criterion. Merging was not al-
lowed across states. Merging within the entire phoneme not
only was extremely expensive, but also did not contribute to
recognition.

Gender-dependent are trained using the ML criterion.
Variance were fixed to Speaker-Independent (SI) ones. Un-
seen Gaussians were left untouched (SI), as they seem to
provide background modelling necessary for classification.
These models provided a basis for a better cut-based seg-
mentation, and the cycle of segmentation, tree growing, it-
erative splitting, gender-modelling was repeated four times
from bootstrap WSJ segmentation.
STT-sub1xRT: The faster-than-realtime models are trained
similarly. Merging starts directly at 32 Gaussians per state
from 87904 Gaussians to 32000 Gaussians. We allowed
merging between all states of allophones with the same cen-
ter phoneme. The system description incorrectly specifies
87904 component weights. There were only about 40000.
We did not train gender-dependent models. The word-level
segmentation described above is used to train these models.
MD: Five models, comprising silence, and the carte-
sian product of bandwidth and gender, were trained on
LDC97S44. Wideband was defined as those segments la-
beled “high fidelity”. Music-only detection seemed to in-
crease the false-rejection rate and was discarded.

Gaussian Mixture Models (GMMs) of 512 Gaussians per
model segmented LDC98S71 (train96). Iterative splitting
and training on both databases yielded our final models.

2.2.2. Switchboard

We used the full 265h of Switchboard1-Release 2 from
LDC97S62. Due to lack of time, we made no use of ad-
ditional material such as CallHome, Cell phone, etc. The
segmentation was bootstrapped from a word-level segmen-
tation from Mississippi State University (MSU). All forced-
alignments are generated using speaker-adapted models.
Cross-word models were trained for all compounds of the
SRI language model.

Again, word-internal, 3-state HMM triphones are trained
with the same decision-tree clustering and iterative split-
ting / merging methodology. 3892 mixtures with 128
Gaussians each, totalling 489350 Gaussians were entropy-
merged down to 256000 Gaussians.

The segmentation step must decide whether to split com-
pounds or leave them as cross-words. For instance, let
i_have_a be a trigram compound. It may occur in the
training data as i sil have_a, i_have sil a, or
i sil have sil a. Its left and right components may
also be incorporated with neighbouring compounds. We re-
lied on Viterbi alignement for these decisions.

2.3. Language modeling

2.3.1. Broadcast news

On Table 1 we show which data were incorporated in
LM training. The language model includes 53514 words,

Name Size (M words) Weight
1996 CSR Hub-4 140 3
North American News 500 1
TDT2 + TDT3 31 3
Acoustic training 1.6 12

Table 1. LM training data: amount and weighting

19007163 bigrams, and 68189884 trigrams in a standard
backoff topology.

2.3.2. Switchboard

The language model was kindly provided to us by Andreas
Stolcke from SRI [1]. It contains 34610 words, includ-
ing 1659 compounds, 4826134 bigrams and 11518366 tri-
grams. Training data includes Broadcast news, Call Home,
and Switchboard1. The most frequent compounds were
transcribed manually for cross-word coarticulation.

2.3.3. Meta-Data

The meta-data comprises two tasks: speaker segmentation
and speaker clustering.

The system used for segmenting the speech in the HUB4
evaluation is as follows. The speech is first decoded using
512-GMM models for the following classes:

� NM : Narrowband Male,

� NF : Narrowband Female,

� WM : Wideband Male,

� WF : Wideband Female,

� sil : Silence.

Each class must last at least 25ms.
The decoded output is then heuristically smoothed in the

following rules:



1. Consecutive segments of non-silence are merged, and
assigned to the dominating class.

2. Segments surrounded with less than 0.4 seconds are
merged again if speech is smaller than 4 seconds.

3. Silence of fewer than 0.15s between two segments of
identical conditions are collapsed.

4. Silence of fewer than 0.15s between two segments of
different conditions are collapsed, if either segment is
less than 4 seconds, a resulting segment encompassing
both is labeled with the longer segments’ label.

This minimizes the false-rejection (FR), which is later pro-
cessed with a speech recognizer, but increases the false ac-
ceptance (FA) rate. We prefer to overdetect than to chop
words.

For speaker clustering, BIC was employed. Bottom-up
hierarchial clustering was performed on segments obtained
from the segmentation. Statitics used were merged using all
data from the belonging to the same cluster. In the first step,
each individual segment constitueted its own cluster. Suc-
cessive merges were performed until a threshold, either by
a specific lambda value or a predefined number of clusters,
is fulfilled.

3. STT-DECODING

The decoding strategy underwent significant changes during
April. To fit the self-imposed real-time constraints, we eval-
uated many possibilities. Optimizing code and short-listing
the vocabulary were the two decisive accelerations that we
retained. However, while shrinking the system we realized
that we could fit faster-than-real-time constraints, and hence
decided to submit it.

In the following we will describe BN-STT and SWB-STT
decoding.

3.1. Broadcast news / Less than 10xRT

The BN-STT system proceeds in two stages. The first-pass
decoding uses gender-dependent models according to the
labels provided by the segmentation/clustering step. There
were 192000 Gaussians as described previously.

The most likely transcription is used for MLLR adap-
tation. Block-diagonal matrices (3 blocks) constitute the
transformation. The 7 regression classes were allocated to
silence(1), vowels (4), and consonants (2). In degenerate
cases we allowed ourselves to reduce the number of classes
to three (one for each of silence, vowel, and consonants) or
one global class.

Words hypothesized during the first-pass decoding con-
stituted the second-pass lexicon. They amounted to about
400 words per audio cut.

3.2. Broadcast news / Less than 1xRT

The faster sister system also proceeds in two stages. The
first-pass decode runs on 2 to 5 seconds of the audio cuts
until a minimum amount of true speech is found (about 4
words). Even on that short amount, adaptation provides bet-
ter recognition and faster decoding time.

Silence Gaussians were not adapted. The statistics of
a block-diagonal MLLR transformation were interpolated
with the identity matrix prior, using somewhat heuristic
weights optimized on a small subset of the eval98 test set.

The second-pass runs with adapted models. The cluster-
ing is purely acoustic and does not use any STT results. It
is the same as the previous (sub10xRT) system.

3.3. Switchboard / less than 10xRT

Our SWB-STT system is a single-pass Viterbi decoding.
We use 256000 Gaussians and trigram language models.

The real-time factor for automatic segmentations leaves
almost twice as much time for decoding. Meeting recogni-
tion has the same factor but with more channels. RT com-
putation is

RT �
Time spent to produce transcriptions

reference time
� (1)

For reference time, in manual (PEM) evaluation, we count
the total speech in the PEM segments. For UEM, however,
we count the total audio time in both sides, that is, twice
the time of the conversation. Since our segmentation time
is very small, we were left with an approximately 10xRT on
PEM, and 5xRT on UEM.

In order not to take too much advantage of this speedup,
we merely augmented the beam to top-off the real-time con-
straint. We observed about 0.5-1% WER degradation using
automatic labels, and about 1% WER improvement lever-
aging the large beam.

4. RESULTS

In this section, we compare evaluation versus development
results. BN-STT was surprisingly easy, while SWB-STT
appeared more difficult.

4.1. BN

Table 2 shows BN-STT system results on our development
set (evaluation set of 1998). We excluded training data from
the test epoch from the language model. However, a prox-
imity in topic with other TDT data might be the cause of this
unexpectedly low WER. We suspect that the LIMSI also ob-
served a similar, although less dramatical “improvement”.



Test set system WER

Eval98 sub1xRT-first pass 28.4%
sub1xRT-two pass � 26%

Eval02 sub1xRT 23.7%
Eval98 sub10xRT-first pass 23.4%

sub10xRT-two pass 21.7%
Eval02 sub10xRT 20.1%

Table 2. BN-STT system

4.2. SWB

Results for Switchboard-I only on Table 3. Due to lack
of resources, we had been mainly developing and testing
Switchboard-I data. Our development set, SWBD-00, con-
sists of the Switchboard-I test set of the NIST 2000 eval-
uation (also the dev set of the 2001 eval). We include our
system on the dev set, our system on Eval02, AT&T’s faster-
than-realtime system, and reported results by JHU in 2001,
with a single-pass running at about 25xRT, if we use the
lenient unpartitioned evaluation RT computation. CU-HTk
submitted a “late” system after the evaluation, which we list
in the table. It was developed in a very short time.

Test set WER RT

SWBD-00 33.8% 10
Eval02 36.7% 10
JHU.1 32.7% 50
AT&T-1x 29.5% 1
CUHTk-late 22.3% 10

Table 3. SWB-STT system

The relative drop in performance between dev and eval
sets could be due to overtuning or instrinsic difficulty. Our
lack of experience in participating to these evaluations did
also contribute.

Real-time factors extracted from JHU’s presentation are
also in line with other participants of that evaluation. We
used them to calibrate our expectations on our relative po-
sition in the evaluation. In our projections, our system was
to be comparable with a standard first-pass of eval-2001, in
half the real-time factor.

Nonetheless, we hope to have aroused interest among
other participants.

5. PERFORMANCE COMPARISON

This section is devoted to trying to interpret our relatively
low results. Given the very high technical level of NIST
evaluations, first-time participants such as PSTL customar-
ily display relatively high WER compared with old-timers.

Tables 4 and 5 show approximate best and worst partici-
pants scores for BN and SWBD-I data along the years. Re-
sults are not directly comparative from year to year, espe-
cially for SWB data, to which recognizers seem to be very
sensitive.

96 97 98 99 02
Best 27% 16% 14% 14% 13%
Worst 56% 39% 26% 28% 20%
Participants 10 10 10 4 2

Table 4. WER of BN-STT

� 99 00 01 02
Best 37% 19% 20% 22%
Worst ?% 42% 37% 37%
Participants ? 5 7 7

Table 5. WER of SWB-STT (Switchboard-I)

For BN data, we seem to score somewhat decently as a
first-timer. On SWB, however, the outlook is not overly
alarming but in the grey area. Even with our lower than
expected performance, we score relatively better.

6. CONCLUSION AND OUTLOOK

In this paper, we presented our MD and STT systems sub-
mitted to the RT-2002 evaluation. Most of characteristics
are but standard ones, yet we attempted to focus on ex-
ploratory conditions, which are characterized by small re-
sources. Indeed, except for the standard 10xRT and the late
HTk system, we were the only ones in the sub10xRT UEM
SWB and sub1xRT BN, and MD conditions. Rather to con-
centrate on a particular condition, we decided to evaluate
what could be done in non-standard conditions. Also, our
system is portable in the sense that almost no SWB- or BN-
specific customizations were considered. We were the most
cooperative in submitting as many primary systems possible
in STT and MD.

We will continue implementing baseline features towards
reaching an acceptable level of performance. Our unre-
leased distinctive features, such as eigenvoices, constrained
model space adaptation, full-variance LU MAP adaptation,
etc. are being currently tested.
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